Nuprl Lemma : qmul-qdiv

[a,b,c,d:ℚ].  (((a/c) (b/d)) (a b/c d) ∈ ℚsupposing ((¬(d 0 ∈ ℚ)) and (c 0 ∈ ℚ)))


Proof




Definitions occuring in Statement :  qdiv: (r/s) qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) prop: cand: c∧ B true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  qmul-preserves-eq qmul_wf qdiv_wf not_wf equal-wf-T-base rationals_wf qmul-not-zero equal_wf squash_wf true_wf qmul_comm_qrng qmul-qdiv-cancel3 iff_weakening_equal qmul_ac_1_qrng qmul-qdiv-cancel qmul-qdiv-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis because_Cache productElimination baseClosed sqequalRule isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry independent_pairFormation natural_numberEquality applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality independent_functionElimination

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (((a/c)  *  (b/d))  =  (a  *  b/c  *  d))  supposing  ((\mneg{}(d  =  0))  and  (\mneg{}(c  =  0)))



Date html generated: 2018_05_21-PM-11_56_41
Last ObjectModification: 2017_07_26-PM-06_47_14

Theory : rationals


Home Index