Nuprl Lemma : qmul-qdiv-cancel

[a,b:ℚ].  (a (b/a)) b ∈ ℚ supposing ¬(a 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q prop: qdiv: (r/s) true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  assert-qeq int-subtype-rationals assert_wf qeq_wf2 not_wf equal-wf-T-base rationals_wf qinv_wf equal_wf qmul_assoc iff_weakening_equal qmul_inv_l qmul_wf squash_wf true_wf qmul_comm_qrng qmul_ac_1_qrng qmul_one_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis addLevel sqequalHypSubstitution impliesFunctionality extract_by_obid isectElimination thin hypothesisEquality natural_numberEquality applyEquality sqequalRule productElimination independent_isectElimination because_Cache baseClosed isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination imageMemberEquality independent_functionElimination hyp_replacement applyLambdaEquality universeEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    (a  *  (b/a))  =  b  supposing  \mneg{}(a  =  0)



Date html generated: 2018_05_21-PM-11_50_48
Last ObjectModification: 2017_07_26-PM-06_44_09

Theory : rationals


Home Index