Nuprl Lemma : qinv_wf
∀[r:ℚ]. 1/r ∈ ℚ supposing ¬↑qeq(r;0)
Proof
Definitions occuring in Statement : 
qinv: 1/r
, 
rationals: ℚ
, 
qeq: qeq(r;s)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
not: ¬A
, 
false: False
, 
qeq: qeq(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
btrue: tt
, 
qinv: 1/r
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bfalse: ff
, 
rev_uimplies: rev_uimplies(P;Q)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
rationals_wf, 
b-union_wf, 
int_nzero_wf, 
bool_wf, 
qeq_wf, 
qeq_refl, 
qeq-functionality, 
subtype_rel_b-union-left, 
member_wf, 
squash_wf, 
true_wf, 
istype-universe, 
quotient-member-eq, 
qeq-equiv, 
qinv-wf, 
subtype_base_sq, 
bool_subtype_base, 
equal-wf-T-base, 
assert_wf, 
istype-void, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
eqtt_to_assert, 
assert_of_eq_int, 
int_subtype_base, 
product-valueall-type, 
eq_int_wf, 
set-valueall-type, 
nequal_wf, 
int_nzero_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
intformand_wf, 
int_formula_prop_and_lemma, 
equal_wf, 
not_wf, 
int-subtype-rationals, 
qeq-wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
intEquality, 
productEquality, 
promote_hyp, 
lambdaFormation_alt, 
equalityIsType3, 
hypothesisEquality, 
baseClosed, 
inhabitedIsType, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
productIsType, 
equalityIsType4, 
dependent_functionElimination, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
because_Cache, 
instantiate, 
cumulativity, 
independent_functionElimination, 
imageMemberEquality, 
unionElimination, 
equalityElimination, 
functionIsType, 
equalityIsType1, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
independent_pairEquality, 
multiplyEquality, 
setElimination, 
rename, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
lambdaFormation
Latex:
\mforall{}[r:\mBbbQ{}].  1/r  \mmember{}  \mBbbQ{}  supposing  \mneg{}\muparrow{}qeq(r;0)
Date html generated:
2019_10_16-AM-11_47_12
Last ObjectModification:
2018_10_11-PM-01_25_28
Theory : rationals
Home
Index