Nuprl Lemma : qinv-wf
∀[r:ℤ ⋃ (ℤ × ℤ-o)]. 1/r ∈ ℤ ⋃ (ℤ × ℤ-o) supposing ¬↑qeq(r;0)
Proof
Definitions occuring in Statement : 
qinv: 1/r
, 
qeq: qeq(r;s)
, 
int_nzero: ℤ-o
, 
b-union: A ⋃ B
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
qinv: 1/r
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
btrue: tt
, 
bfalse: ff
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
qeq: qeq(r;s)
, 
evalall: evalall(t)
, 
eq_int: (i =z j)
, 
assert: ↑b
, 
true: True
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_nzero_properties, 
assert_of_eq_int, 
set-valueall-type, 
product-valueall-type, 
ifthenelse_wf, 
nequal_wf, 
equal_wf, 
int_subtype_base, 
subtype_base_sq, 
evalall-reduce, 
int-valueall-type, 
valueall-type-has-valueall, 
b-union_wf, 
int_nzero_wf, 
subtype_rel_b-union-left, 
qeq_wf, 
assert_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
intEquality, 
productEquality, 
isect_memberEquality, 
because_Cache, 
imageElimination, 
productElimination, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
callbyvalueReduce, 
isintReduceTrue, 
imageMemberEquality, 
dependent_pairEquality, 
independent_pairEquality, 
dependent_set_memberEquality, 
lambdaFormation, 
independent_functionElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
voidElimination, 
universeEquality, 
lambdaEquality, 
sqleReflexivity, 
multiplyEquality, 
setElimination, 
rename, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[r:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].  1/r  \mmember{}  \mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})  supposing  \mneg{}\muparrow{}qeq(r;0)
Date html generated:
2016_05_15-PM-10_38_06
Last ObjectModification:
2016_01_16-PM-09_37_10
Theory : rationals
Home
Index