Nuprl Lemma : qinv-wf

[r:ℤ ⋃ (ℤ × ℤ-o)]. 1/r ∈ ℤ ⋃ (ℤ × ℤ-osupposing ¬↑qeq(r;0)


Proof




Definitions occuring in Statement :  qinv: 1/r qeq: qeq(r;s) int_nzero: -o b-union: A ⋃ B assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B qinv: 1/r b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) btrue: tt bfalse: ff int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False so_lambda: λ2x.t[x] so_apply: x[s] qeq: qeq(r;s) evalall: evalall(t) eq_int: (i =z j) assert: b true: True uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermMultiply_wf itermConstant_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int int_nzero_properties assert_of_eq_int set-valueall-type product-valueall-type ifthenelse_wf nequal_wf equal_wf int_subtype_base subtype_base_sq evalall-reduce int-valueall-type valueall-type-has-valueall b-union_wf int_nzero_wf subtype_rel_b-union-left qeq_wf assert_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality natural_numberEquality applyEquality intEquality productEquality isect_memberEquality because_Cache imageElimination productElimination unionElimination equalityElimination independent_isectElimination callbyvalueReduce isintReduceTrue imageMemberEquality dependent_pairEquality independent_pairEquality dependent_set_memberEquality lambdaFormation independent_functionElimination instantiate cumulativity dependent_functionElimination voidElimination universeEquality lambdaEquality sqleReflexivity multiplyEquality setElimination rename dependent_pairFormation int_eqEquality voidEquality computeAll

Latex:
\mforall{}[r:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].  1/r  \mmember{}  \mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})  supposing  \mneg{}\muparrow{}qeq(r;0)



Date html generated: 2016_05_15-PM-10_38_06
Last ObjectModification: 2016_01_16-PM-09_37_10

Theory : rationals


Home Index