Nuprl Lemma : qeq-functionality

[r,s,x:ℤ ⋃ (ℤ × ℤ-o)].  qeq(r;x) qeq(s;x) supposing qeq(r;s) tt


Proof




Definitions occuring in Statement :  qeq: qeq(r;s) int_nzero: -o b-union: A ⋃ B btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] product: x:A × B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) qeq: qeq(r;s) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] int_nzero: -o btrue: tt iff: ⇐⇒ Q and: P ∧ Q uiff: uiff(P;Q) rev_implies:  Q subtype_rel: A ⊆B bfalse: ff sq_type: SQType(T) guard: {T} nequal: a ≠ b ∈  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: true: True squash: T
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce int_nzero_wf product-valueall-type set-valueall-type nequal_wf bool_wf qeq_wf btrue_wf iff_imp_equal_bool eq_int_wf eqtt_to_assert assert_of_eq_int iff_weakening_uiff assert_wf equal-wf-base int_subtype_base istype-assert set_subtype_base subtype_base_sq int_nzero_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf mul_cancel_in_eq equal_wf squash_wf true_wf istype-universe mul_com subtype_rel_self iff_weakening_equal intformand_wf int_formula_prop_and_lemma mul-associates mul-commutes mul-swap mul_assoc int_entire itermConstant_wf int_term_value_constant_lemma zero-mul zero_ann_a intformor_wf int_formula_prop_or_lemma mul_nzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution imageElimination productElimination thin unionElimination equalityElimination sqequalRule extract_by_obid isectElimination intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache productEquality lambdaEquality_alt inhabitedIsType independent_functionElimination lambdaFormation_alt natural_numberEquality independent_pairEquality equalityIstype universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies isintReduceTrue independent_pairFormation equalityTransitivity equalitySymmetry applyEquality promote_hyp multiplyEquality setElimination rename dependent_set_memberEquality_alt productIsType applyLambdaEquality baseApply closedConclusion baseClosed sqequalBase instantiate cumulativity dependent_functionElimination approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  voidElimination universeEquality imageMemberEquality inlFormation_alt

Latex:
\mforall{}[r,s,x:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].    qeq(r;x)  =  qeq(s;x)  supposing  qeq(r;s)  =  tt



Date html generated: 2020_05_20-AM-09_12_48
Last ObjectModification: 2020_01_28-PM-02_40_46

Theory : rationals


Home Index