Nuprl Lemma : qeq-wf

[r,s:ℚ].  (qeq(r;s) ∈ 𝔹)


Proof




Definitions occuring in Statement :  rationals: qeq: qeq(r;s) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rationals: quotient: x,y:A//B[x; y] and: P ∧ Q prop: uimplies: supposing a iff: ⇐⇒ Q implies:  Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) all: x:A. B[x] assert: b ifthenelse: if then else fi  btrue: tt true: True sym: Sym(T;x,y.E[x; y]) sq_type: SQType(T) guard: {T}
Lemmas referenced :  true_wf bool_subtype_base subtype_base_sq qeq-equiv eqtt_to_assert assert_wf iff_imp_equal_bool rationals_wf qeq_wf equal-wf-T-base int_nzero_wf b-union_wf equal-wf-base bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality lemma_by_obid hypothesis sqequalRule pertypeElimination productElimination thin productEquality isectElimination intEquality hypothesisEquality because_Cache baseClosed axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality independent_isectElimination independent_pairFormation lambdaFormation dependent_functionElimination independent_functionElimination natural_numberEquality instantiate cumulativity

Latex:
\mforall{}[r,s:\mBbbQ{}].    (qeq(r;s)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-10_37_04
Last ObjectModification: 2016_01_16-PM-09_37_38

Theory : rationals


Home Index