Nuprl Lemma : qeq-wf
∀[r,s:ℚ].  (qeq(r;s) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
qeq: qeq(r;s)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rationals: ℚ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
sym: Sym(T;x,y.E[x; y])
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
true_wf, 
bool_subtype_base, 
subtype_base_sq, 
qeq-equiv, 
eqtt_to_assert, 
assert_wf, 
iff_imp_equal_bool, 
rationals_wf, 
qeq_wf, 
equal-wf-T-base, 
int_nzero_wf, 
b-union_wf, 
equal-wf-base, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
productEquality, 
isectElimination, 
intEquality, 
hypothesisEquality, 
because_Cache, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[r,s:\mBbbQ{}].    (qeq(r;s)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-10_37_04
Last ObjectModification:
2016_01_16-PM-09_37_38
Theory : rationals
Home
Index