Nuprl Lemma : qmul_inv_l

[r:ℚ]. (1/r r) 1 ∈ ℚ supposing ¬(r 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qinv: 1/r qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf rationals_wf qmul_com qinv_wf assert-qeq int-subtype-rationals assert_wf qeq_wf2 not_wf equal-wf-T-base iff_weakening_equal qmul_inv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality independent_isectElimination addLevel impliesFunctionality because_Cache natural_numberEquality sqequalRule productElimination baseClosed imageMemberEquality independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[r:\mBbbQ{}].  (1/r  *  r)  =  1  supposing  \mneg{}(r  =  0)



Date html generated: 2018_05_21-PM-11_49_25
Last ObjectModification: 2017_07_26-PM-06_43_27

Theory : rationals


Home Index