Nuprl Lemma : qmul_inv
∀[r:ℚ]. (r * 1/r) = 1 ∈ ℚ supposing ¬(r = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qinv: 1/r
, 
qmul: r * s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
false: False
, 
qdiv: (r/s)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
mk-rational: mk-rational(a;b)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
Lemmas referenced : 
assert-qeq, 
qmul_wf, 
qinv_wf, 
int-subtype-rationals, 
assert_wf, 
qeq_wf2, 
not_wf, 
equal-wf-T-base, 
rationals_wf, 
q-elim, 
nat_plus_properties, 
equal-wf-base, 
int_subtype_base, 
qdiv_wf, 
qeq-elim, 
qmul-elim, 
qinv-elim, 
neg_assert_of_eq_int, 
mk-rational_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
nequal_wf, 
mul_nzero, 
intformless_wf, 
int_formula_prop_less_lemma, 
assert_of_eq_int, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
addLevel, 
impliesFunctionality, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
productElimination, 
baseClosed, 
independent_pairFormation, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
setElimination, 
rename, 
hyp_replacement, 
Error :applyLambdaEquality, 
functionEquality, 
independent_functionElimination, 
lambdaFormation, 
levelHypothesis, 
promote_hyp, 
impliesLevelFunctionality, 
voidElimination, 
baseApply, 
closedConclusion, 
isintReduceTrue, 
multiplyEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
unionElimination
Latex:
\mforall{}[r:\mBbbQ{}].  (r  *  1/r)  =  1  supposing  \mneg{}(r  =  0)
Date html generated:
2016_10_25-AM-11_50_58
Last ObjectModification:
2016_07_12-AM-07_47_41
Theory : rationals
Home
Index