Nuprl Lemma : qmul_inv

[r:ℚ]. (r 1/r) 1 ∈ ℚ supposing ¬(r 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qinv: 1/r qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q prop: rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B implies:  Q false: False qdiv: (r/s) ifthenelse: if then else fi  btrue: tt bfalse: ff mk-rational: mk-rational(a;b) int_nzero: -o nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  assert-qeq qmul_wf qinv_wf int-subtype-rationals assert_wf qeq_wf2 not_wf equal-wf-T-base rationals_wf q-elim nat_plus_properties equal-wf-base int_subtype_base qdiv_wf qeq-elim qmul-elim qinv-elim neg_assert_of_eq_int mk-rational_wf satisfiable-full-omega-tt intformand_wf intformeq_wf itermMultiply_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf nequal_wf mul_nzero intformless_wf int_formula_prop_less_lemma assert_of_eq_int decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache independent_isectElimination hypothesis addLevel impliesFunctionality natural_numberEquality applyEquality sqequalRule productElimination baseClosed independent_pairFormation isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_functionElimination setElimination rename hyp_replacement Error :applyLambdaEquality,  functionEquality independent_functionElimination lambdaFormation levelHypothesis promote_hyp impliesLevelFunctionality voidElimination baseApply closedConclusion isintReduceTrue multiplyEquality dependent_set_memberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality voidEquality computeAll unionElimination

Latex:
\mforall{}[r:\mBbbQ{}].  (r  *  1/r)  =  1  supposing  \mneg{}(r  =  0)



Date html generated: 2016_10_25-AM-11_50_58
Last ObjectModification: 2016_07_12-AM-07_47_41

Theory : rationals


Home Index