Nuprl Lemma : qinv-elim
∀[r:ℚ]. (1/r ~ if isint(r) then <1, r> else let p,q = r in <q, p> fi )
Proof
Definitions occuring in Statement : 
qinv: 1/r
, 
rationals: ℚ
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
isint: isint def, 
spread: spread def, 
pair: <a, b>
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qinv: 1/r
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
sqequalAxiom
Latex:
\mforall{}[r:\mBbbQ{}].  (1/r  \msim{}  if  isint(r)  then  ə,  r>  else  let  p,q  =  r  in  <q,  p>  fi  )
Date html generated:
2016_05_15-PM-10_39_39
Last ObjectModification:
2015_12_27-PM-07_58_55
Theory : rationals
Home
Index