Nuprl Lemma : qinv-elim

[r:ℚ]. (1/r if isint(r) then <1, r> else let p,q in <q, p> fi )


Proof




Definitions occuring in Statement :  qinv: 1/r rationals: ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x] isint: isint def spread: spread def pair: <a, b> natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qinv: 1/r uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce sqequalAxiom

Latex:
\mforall{}[r:\mBbbQ{}].  (1/r  \msim{}  if  isint(r)  then  ə,  r>  else  let  p,q  =  r  in  <q,  p>  fi  )



Date html generated: 2016_05_15-PM-10_39_39
Last ObjectModification: 2015_12_27-PM-07_58_55

Theory : rationals


Home Index