Nuprl Lemma : qmul-not-zero

[a,b:ℚ].  uiff(¬((a b) 0 ∈ ℚ);(¬(a 0 ∈ ℚ)) ∧ (b 0 ∈ ℚ)))


Proof




Definitions occuring in Statement :  qmul: s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B true: True squash: T guard: {T} iff: ⇐⇒ Q
Lemmas referenced :  qmul_zero_qrng equal-wf-T-base qmul_wf rationals_wf not_wf qdiv_wf int-subtype-rationals equal_wf squash_wf true_wf qmul-qdiv-cancel4 qmul_one_qrng iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution independent_functionElimination hypothesis extract_by_obid isectElimination hypothesisEquality productElimination hyp_replacement equalitySymmetry applyLambdaEquality because_Cache voidElimination baseClosed sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination productEquality isect_memberEquality equalityTransitivity natural_numberEquality applyEquality independent_isectElimination imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(\mneg{}((a  *  b)  =  0);(\mneg{}(a  =  0))  \mwedge{}  (\mneg{}(b  =  0)))



Date html generated: 2018_05_21-PM-11_51_26
Last ObjectModification: 2017_07_26-PM-06_44_31

Theory : rationals


Home Index