Nuprl Lemma : qmul-not-zero
∀[a,b:ℚ].  uiff(¬((a * b) = 0 ∈ ℚ);(¬(a = 0 ∈ ℚ)) ∧ (¬(b = 0 ∈ ℚ)))
Proof
Definitions occuring in Statement : 
qmul: r * s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
qmul_zero_qrng, 
equal-wf-T-base, 
qmul_wf, 
rationals_wf, 
not_wf, 
qdiv_wf, 
int-subtype-rationals, 
equal_wf, 
squash_wf, 
true_wf, 
qmul-qdiv-cancel4, 
qmul_one_qrng, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
independent_functionElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
because_Cache, 
voidElimination, 
baseClosed, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
productEquality, 
isect_memberEquality, 
equalityTransitivity, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(\mneg{}((a  *  b)  =  0);(\mneg{}(a  =  0))  \mwedge{}  (\mneg{}(b  =  0)))
Date html generated:
2018_05_21-PM-11_51_26
Last ObjectModification:
2017_07_26-PM-06_44_31
Theory : rationals
Home
Index