Nuprl Lemma : qmul_functionality_wrt_qle

[a,b,c,d:ℚ].  ((a c) ≤ (b d)) supposing ((c ≤ d) and (a ≤ b) and (0 ≤ c) and (0 ≤ a))


Proof




Definitions occuring in Statement :  qle: r ≤ s qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q implies:  Q prop: squash: T and: P ∧ Q true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B uiff: uiff(P;Q) not: ¬A false: False qle: r ≤ s grp_leq: a ≤ b assert: b ifthenelse: if then else fi  infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bfalse: ff qeq: qeq(r;s) eq_int: (i =z j)
Lemmas referenced :  decidable__equal_rationals qle_witness qmul_wf qle_wf int-subtype-rationals rationals_wf squash_wf true_wf qmul_zero_qrng iff_weakening_equal qmul-non-neg or_wf equal-wf-T-base qless_wf qle_transitivity_qorder qle-iff qle_antisymmetry qle_weakening_eq_qorder qmul_preserves_qle2 qmul_comm_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis applyEquality because_Cache sqequalRule unionElimination isectElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination productElimination imageMemberEquality baseClosed universeEquality independent_isectElimination hyp_replacement Error :applyLambdaEquality,  inlFormation productEquality minusEquality inrFormation independent_pairFormation promote_hyp equalityElimination voidElimination

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    ((a  *  c)  \mleq{}  (b  *  d))  supposing  ((c  \mleq{}  d)  and  (a  \mleq{}  b)  and  (0  \mleq{}  c)  and  (0  \mleq{}  a))



Date html generated: 2016_10_25-PM-00_07_50
Last ObjectModification: 2016_07_12-AM-07_50_49

Theory : rationals


Home Index