Nuprl Lemma : qmul_functionality_wrt_qle
∀[a,b,c,d:ℚ]. ((a * c) ≤ (b * d)) supposing ((c ≤ d) and (a ≤ b) and (0 ≤ c) and (0 ≤ a))
Proof
Definitions occuring in Statement :
qle: r ≤ s
,
qmul: r * s
,
rationals: ℚ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
decidable: Dec(P)
,
or: P ∨ Q
,
implies: P
⇒ Q
,
prop: ℙ
,
squash: ↓T
,
and: P ∧ Q
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
uiff: uiff(P;Q)
,
not: ¬A
,
false: False
,
qle: r ≤ s
,
grp_leq: a ≤ b
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
infix_ap: x f y
,
grp_le: ≤b
,
pi1: fst(t)
,
pi2: snd(t)
,
qadd_grp: <ℚ+>
,
q_le: q_le(r;s)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
bor: p ∨bq
,
qpositive: qpositive(r)
,
qsub: r - s
,
qadd: r + s
,
qmul: r * s
,
btrue: tt
,
lt_int: i <z j
,
bfalse: ff
,
qeq: qeq(r;s)
,
eq_int: (i =z j)
Lemmas referenced :
decidable__equal_rationals,
qle_witness,
qmul_wf,
qle_wf,
int-subtype-rationals,
rationals_wf,
squash_wf,
true_wf,
qmul_zero_qrng,
iff_weakening_equal,
qmul-non-neg,
or_wf,
equal-wf-T-base,
qless_wf,
qle_transitivity_qorder,
qle-iff,
qle_antisymmetry,
qle_weakening_eq_qorder,
qmul_preserves_qle2,
qmul_comm_qrng
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
natural_numberEquality,
hypothesis,
applyEquality,
because_Cache,
sqequalRule,
unionElimination,
isectElimination,
independent_functionElimination,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
imageElimination,
productElimination,
imageMemberEquality,
baseClosed,
universeEquality,
independent_isectElimination,
hyp_replacement,
Error :applyLambdaEquality,
inlFormation,
productEquality,
minusEquality,
inrFormation,
independent_pairFormation,
promote_hyp,
equalityElimination,
voidElimination
Latex:
\mforall{}[a,b,c,d:\mBbbQ{}]. ((a * c) \mleq{} (b * d)) supposing ((c \mleq{} d) and (a \mleq{} b) and (0 \mleq{} c) and (0 \mleq{} a))
Date html generated:
2016_10_25-PM-00_07_50
Last ObjectModification:
2016_07_12-AM-07_50_49
Theory : rationals
Home
Index