Nuprl Lemma : qmul-non-neg

a,b:ℚ.  ((a 0 ∈ ℚ) ∨ (b 0 ∈ ℚ) ∨ (0 < a ∧ 0 < b) ∨ (0 < -(a) ∧ 0 < -(b)) ⇐⇒ 0 ≤ (a b))


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qmul: s rationals: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q or: P ∨ Q true: True qle: r ≤ s grp_leq: a ≤ b assert: b ifthenelse: if then else fi  infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) squash: T uimplies: supposing a guard: {T} decidable: Dec(P) cand: c∧ B false: False not: ¬A
Lemmas referenced :  or_wf equal-wf-T-base rationals_wf qless_wf int-subtype-rationals qmul_wf qle_wf squash_wf true_wf qmul_zero_qrng iff_weakening_equal qmul-positive qle_weakening_lt_qorder decidable__equal_rationals qless_trichot_qorder qless_transitivity_2_qorder qless_irreflexivity qmul-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality baseClosed because_Cache productEquality natural_numberEquality applyEquality sqequalRule minusEquality unionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  equalityTransitivity lambdaEquality imageElimination productElimination imageMemberEquality universeEquality independent_isectElimination independent_functionElimination dependent_functionElimination inlFormation inrFormation voidElimination

Latex:
\mforall{}a,b:\mBbbQ{}.    ((a  =  0)  \mvee{}  (b  =  0)  \mvee{}  (0  <  a  \mwedge{}  0  <  b)  \mvee{}  (0  <  -(a)  \mwedge{}  0  <  -(b))  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  (a  *  b))



Date html generated: 2016_10_25-PM-00_07_19
Last ObjectModification: 2016_07_12-AM-07_50_28

Theory : rationals


Home Index