Nuprl Lemma : qmul_preserves_qle2

[a,b,c:ℚ].  ((c a) ≤ (c b)) supposing ((a ≤ b) and (0 ≤ c))


Proof




Definitions occuring in Statement :  qle: r ≤ s qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q uall: [x:A]. B[x] implies:  Q prop: true: True qle: r ≤ s grp_leq: a ≤ b assert: b ifthenelse: if then else fi  infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qle-iff qmul_wf qle_wf int-subtype-rationals rationals_wf qle_witness qmul_preserves_qle squash_wf true_wf qmul_zero_qrng iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin natural_numberEquality hypothesis applyEquality because_Cache sqequalRule hypothesisEquality productElimination independent_isectElimination unionElimination isectElimination isect_memberFormation independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((c  *  a)  \mleq{}  (c  *  b))  supposing  ((a  \mleq{}  b)  and  (0  \mleq{}  c))



Date html generated: 2016_10_25-PM-00_07_42
Last ObjectModification: 2016_07_12-AM-07_50_32

Theory : rationals


Home Index