Nuprl Lemma : qmul_preserves_qle2
∀[a,b,c:ℚ].  ((c * a) ≤ (c * b)) supposing ((a ≤ b) and (0 ≤ c))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qmul: r * s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
true: True
, 
qle: r ≤ s
, 
grp_leq: a ≤ b
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
infix_ap: x f y
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
qadd: r + s
, 
qmul: r * s
, 
btrue: tt
, 
lt_int: i <z j
, 
bfalse: ff
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
qle-iff, 
qmul_wf, 
qle_wf, 
int-subtype-rationals, 
rationals_wf, 
qle_witness, 
qmul_preserves_qle, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
unionElimination, 
isectElimination, 
isect_memberFormation, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((c  *  a)  \mleq{}  (c  *  b))  supposing  ((a  \mleq{}  b)  and  (0  \mleq{}  c))
Date html generated:
2016_10_25-PM-00_07_42
Last ObjectModification:
2016_07_12-AM-07_50_32
Theory : rationals
Home
Index