Nuprl Lemma : qinv-nonneg
∀[v:ℚ]. 0 ≤ (1/v) supposing 0 < v
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
qge: a ≥ b
, 
qgt: a > b
Lemmas referenced : 
qle_witness, 
qdiv_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
equal_wf, 
rationals_wf, 
qless_wf, 
qle-int, 
false_wf, 
qle_functionality_wrt_implies, 
qle_weakening_lt_qorder, 
qinv-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
lambdaFormation, 
hypothesisEquality, 
voidElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation
Latex:
\mforall{}[v:\mBbbQ{}].  0  \mleq{}  (1/v)  supposing  0  <  v
Date html generated:
2016_05_15-PM-11_04_00
Last ObjectModification:
2015_12_27-PM-07_46_52
Theory : rationals
Home
Index