Nuprl Lemma : qinv-nonneg

[v:ℚ]. 0 ≤ (1/v) supposing 0 < v


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qdiv: (r/s) rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B not: ¬A implies:  Q guard: {T} false: False prop: uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b qgt: a > b
Lemmas referenced :  qle_witness qdiv_wf qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity equal_wf rationals_wf qless_wf qle-int false_wf qle_functionality_wrt_implies qle_weakening_lt_qorder qinv-positive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis applyEquality because_Cache sqequalRule independent_isectElimination lambdaFormation hypothesisEquality voidElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry productElimination independent_pairFormation

Latex:
\mforall{}[v:\mBbbQ{}].  0  \mleq{}  (1/v)  supposing  0  <  v



Date html generated: 2016_05_15-PM-11_04_00
Last ObjectModification: 2015_12_27-PM-07_46_52

Theory : rationals


Home Index