Nuprl Lemma : qle_functionality_wrt_implies

[a,b,c,d:ℚ].  ({a ≤ supposing b ≤ c}) supposing ((c ≤ d) and (b ≥ a))


Proof




Definitions occuring in Statement :  qge: a ≥ b qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x] guard: {T}
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qge: a ≥ b implies:  Q prop:
Lemmas referenced :  qle_transitivity_qorder qle_witness qle_wf qge_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin hypothesisEquality independent_isectElimination independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (\{a  \mleq{}  d  supposing  b  \mleq{}  c\})  supposing  ((c  \mleq{}  d)  and  (b  \mgeq{}  a))



Date html generated: 2016_05_15-PM-11_00_15
Last ObjectModification: 2015_12_27-PM-07_49_02

Theory : rationals


Home Index