Nuprl Lemma : qle_functionality_wrt_implies
∀[a,b,c,d:ℚ].  ({a ≤ d supposing b ≤ c}) supposing ((c ≤ d) and (b ≥ a))
Proof
Definitions occuring in Statement : 
qge: a ≥ b
, 
qle: r ≤ s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qge: a ≥ b
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
qle_transitivity_qorder, 
qle_witness, 
qle_wf, 
qge_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    (\{a  \mleq{}  d  supposing  b  \mleq{}  c\})  supposing  ((c  \mleq{}  d)  and  (b  \mgeq{}  a))
Date html generated:
2016_05_15-PM-11_00_15
Last ObjectModification:
2015_12_27-PM-07_49_02
Theory : rationals
Home
Index