Nuprl Lemma : slln-lemma1

p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
      (∃B:ℚ((0 ≤ B) ∧ (∀n:ℕ(E(f[n];(x.(x x) x) rv-partial-sum(n;i.X[i])) ≤ (B n)))))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) 0 ∈ ℚ)
         ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ)
         ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))


Proof




Definitions occuring in Statement :  rv-partial-sum: rv-partial-sum(n;i.X[i]) rv-compose: (x.F[x]) X rv-disjoint: rv-disjoint(p;n;X;Y) expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qle: r ≤ s qmul: s rationals: int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] nat: int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] guard: {T} rv-compose: (x.F[x]) X rv-const: a rv-le: X ≤ Y random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace p-outcome: Outcome cand: c∧ B uiff: uiff(P;Q) rv-partial-sum: rv-partial-sum(n;i.X[i]) qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y ifthenelse: if then else fi  lt_int: i <j bfalse: ff grp_id: e pi1: fst(t) pi2: snd(t) add_grp_of_rng: r↓+gp rng_zero: 0 qrng: <ℚ+*> qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) btrue: tt true: True qle: r ≤ s grp_leq: a ≤ b assert: b infix_ap: y grp_le: b qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qeq: qeq(r;s) eq_int: (i =z j) squash: T iff: ⇐⇒ Q rev_implies:  Q rv-add: Y rv-mul: Y rv-scale: q*X less_than: a < b rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b
Lemmas referenced :  member-less_than int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat int_seg_wf rv-disjoint_wf int_seg_subtype_nat istype-false expectation_wf int-subtype-rationals rv-compose_wf qmul_wf istype-less_than rationals_wf random-variable_wf finite-prob-space_wf expectation-rv-const expectation-monotone rv-const_wf qle_wf q-square-non-neg subtype_rel_self length_wf p-outcome_wf decidable__qle qle_reflexivity qle_complement_qorder qle_weakening_lt_qorder primrec-wf2 expectation-constant istype-top subtype_rel_dep_function top_wf equal_wf qsum_wf intformless_wf int_formula_prop_less_lemma qadd_wf and_wf squash_wf true_wf qmul_over_plus_qrng qmul_zero_qrng mon_ident_q iff_weakening_equal rv-partial-sum_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__lt istype-universe sum_unroll_hi_q int_seg_subtype le_weakening2 qle_witness rv-add_wf qmul_assoc_qrng qmul_comm_qrng qmul_ac_1_qrng mon_assoc_q qadd_ac_1_q qadd_comm_q q_distrib qmul_ident subtype_rel-random-variable rv-mul_wf rv-scale_wf expectation-rv-add expectation-rv-disjoint rv-disjoint-compose length_wf_nat rv-disjoint-rv-partial-sum rv-disjoint-monotone-in-first expectation-rv-scale expectation-monotone-in-first rv-disjoint-symmetry expectation-qsum nat_wf qsum-const qle_functionality_wrt_implies qadd_functionality_wrt_qle qle_weakening_eq_qorder qle-int qmul_functionality_wrt_qle non-neg-qmul expectation-non-neg qsub-sub qmul_over_minus_qrng qmul_one_qrng qinv_inv_q qmul_assoc qadd_preserves_qle qadd_inv_assoc_q qinverse_q qle_transitivity_qorder qsub_wf rv-disjoint-rv-scale istype_wf le_weakening member_wf subtype_rel_set le_wf qmul_preserves_qle2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality dependent_set_memberEquality_alt setElimination rename hypothesis natural_numberEquality productElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache functionIsTypeImplies inhabitedIsType independent_pairEquality axiomEquality functionIsType productIsType equalityIstype equalityTransitivity equalitySymmetry hyp_replacement applyLambdaEquality functionEquality setIsType intEquality functionExtensionality_alt closedConclusion imageElimination imageMemberEquality baseClosed instantiate universeEquality promote_hyp functionExtensionality minusEquality productEquality cumulativity

Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  (\mexists{}B:\mBbbQ{}
                    ((0  \mleq{}  B)
                    \mwedge{}  (\mforall{}n:\mBbbN{}
                              (E(f[n];(x.(x  *  x)  *  x  *  x)  o  rv-partial-sum(n;i.X[i]))  \mleq{}  (B  *  n  *  n))))))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))



Date html generated: 2019_10_16-PM-00_40_12
Last ObjectModification: 2018_12_08-AM-11_55_39

Theory : randomness


Home Index