Nuprl Lemma : qsub-sub
∀[a,b:ℤ].  (a - b ~ a - b)
Proof
Definitions occuring in Statement : 
qsub: r - s
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qsub: r - s
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
qadd-add, 
qmul-mul, 
qminus-minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
multiplyEquality, 
addEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  -  b  \msim{}  a  -  b)
Date html generated:
2016_05_15-PM-10_45_02
Last ObjectModification:
2015_12_27-PM-07_54_00
Theory : rationals
Home
Index