Nuprl Lemma : qsub-sub

[a,b:ℤ].  (a b)


Proof




Definitions occuring in Statement :  qsub: s uall: [x:A]. B[x] subtract: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qsub: s subtract: m sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T}
Lemmas referenced :  subtype_base_sq int_subtype_base qadd-add qmul-mul qminus-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule hypothesisEquality minusEquality natural_numberEquality multiplyEquality addEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom intEquality isect_memberEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (a  -  b  \msim{}  a  -  b)



Date html generated: 2016_05_15-PM-10_45_02
Last ObjectModification: 2015_12_27-PM-07_54_00

Theory : rationals


Home Index