Nuprl Lemma : qadd-add
∀[x,y:ℤ].  (x + y ~ x + y)
Proof
Definitions occuring in Statement : 
qadd: r + s
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qadd: r + s
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
isintReduceTrue, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[x,y:\mBbbZ{}].    (x  +  y  \msim{}  x  +  y)
Date html generated:
2016_05_15-PM-10_37_38
Last ObjectModification:
2015_12_27-PM-08_00_02
Theory : rationals
Home
Index