Nuprl Lemma : qadd-add

[x,y:ℤ].  (x y)


Proof




Definitions occuring in Statement :  qadd: s uall: [x:A]. B[x] add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qadd: s uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache isintReduceTrue sqequalAxiom isect_memberEquality

Latex:
\mforall{}[x,y:\mBbbZ{}].    (x  +  y  \msim{}  x  +  y)



Date html generated: 2016_05_15-PM-10_37_38
Last ObjectModification: 2015_12_27-PM-08_00_02

Theory : rationals


Home Index