Nuprl Lemma : qminus-minus

[x:ℤ]. (-(x) -x)


Proof




Definitions occuring in Statement :  qmul: s uall: [x:A]. B[x] minus: -n natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt uimplies: supposing a has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce minus-one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce sqleReflexivity isintReduceTrue minusEquality natural_numberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache sqequalAxiom

Latex:
\mforall{}[x:\mBbbZ{}].  (-(x)  \msim{}  -x)



Date html generated: 2016_05_15-PM-10_37_51
Last ObjectModification: 2015_12_27-PM-07_59_46

Theory : rationals


Home Index