Nuprl Lemma : qsum-const

[n:ℕ]. ∀[q:ℚ].  0 ≤ i < n. (n q) ∈ ℚ)


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qmul: s rationals: nat: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B true: True squash: T so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf rationals_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf int_seg_wf qmul_wf int-subtype-rationals qmul_zero_qrng uall_wf squash_wf true_wf equal_wf sum_unroll_base_q iff_weakening_equal sum_unroll_hi_q qadd_wf subtype_base_sq int_subtype_base qadd-add subtract-add-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma qmul_over_plus_qrng qmul_one_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination because_Cache applyEquality equalitySymmetry productElimination imageElimination equalityTransitivity functionEquality cumulativity universeEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality instantiate

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[q:\mBbbQ{}].    (\mSigma{}0  \mleq{}  i  <  n.  q  =  (n  *  q))



Date html generated: 2018_05_22-AM-00_02_03
Last ObjectModification: 2017_07_26-PM-06_50_33

Theory : rationals


Home Index