Nuprl Lemma : sum_unroll_hi_q
∀[i,j:ℤ]. ∀[E:{i..j-} ⟶ ℚ]. (Σi ≤ k < j. E[k] = (Σi ≤ k < j - 1. E[k] + E[j - 1]) ∈ ℚ) supposing i < j
Proof
Definitions occuring in Statement :
qsum: Σa ≤ j < b. E[j]
,
qadd: r + s
,
rationals: ℚ
,
int_seg: {i..j-}
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
qrng: <ℚ+*>
,
rng_car: |r|
,
pi1: fst(t)
,
rng_plus: +r
,
pi2: snd(t)
,
infix_ap: x f y
,
qsum: Σa ≤ j < b. E[j]
Lemmas referenced :
rng_sum_unroll_hi,
qrng_wf,
crng_subtype_rng
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
applyEquality,
sqequalRule
Latex:
\mforall{}[i,j:\mBbbZ{}]. \mforall{}[E:\{i..j\msupminus{}\} {}\mrightarrow{} \mBbbQ{}]. (\mSigma{}i \mleq{} k < j. E[k] = (\mSigma{}i \mleq{} k < j - 1. E[k] + E[j - 1])) supposing i < j
Date html generated:
2020_05_20-AM-09_24_54
Last ObjectModification:
2020_01_26-AM-11_24_35
Theory : rationals
Home
Index