Nuprl Lemma : qadd_functionality_wrt_qle
∀[a,b,c,d:ℚ].  ((a + c) ≤ (b + d)) supposing ((c ≤ d) and (a ≤ b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
qle_transitivity_qorder, 
iff_weakening_equal, 
qadd_com, 
true_wf, 
squash_wf, 
grp_op_preserves_le_qorder, 
rationals_wf, 
qle_wf, 
qadd_wf, 
qle_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination
Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    ((a  +  c)  \mleq{}  (b  +  d))  supposing  ((c  \mleq{}  d)  and  (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-10_59_57
Last ObjectModification:
2016_01_16-PM-09_31_21
Theory : rationals
Home
Index