Nuprl Lemma : qadd_functionality_wrt_qle

[a,b,c,d:ℚ].  ((a c) ≤ (b d)) supposing ((c ≤ d) and (a ≤ b))


Proof




Definitions occuring in Statement :  qle: r ≤ s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  qle_transitivity_qorder iff_weakening_equal qadd_com true_wf squash_wf grp_op_preserves_le_qorder rationals_wf qle_wf qadd_wf qle_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality productElimination

Latex:
\mforall{}[a,b,c,d:\mBbbQ{}].    ((a  +  c)  \mleq{}  (b  +  d))  supposing  ((c  \mleq{}  d)  and  (a  \mleq{}  b))



Date html generated: 2016_05_15-PM-10_59_57
Last ObjectModification: 2016_01_16-PM-09_31_21

Theory : rationals


Home Index