Nuprl Lemma : qadd_functionality_wrt_qle
∀[a,b,c,d:ℚ]. ((a + c) ≤ (b + d)) supposing ((c ≤ d) and (a ≤ b))
Proof
Definitions occuring in Statement :
qle: r ≤ s
,
qadd: r + s
,
rationals: ℚ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
prop: ℙ
,
true: True
,
squash: ↓T
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
qle_transitivity_qorder,
iff_weakening_equal,
qadd_com,
true_wf,
squash_wf,
grp_op_preserves_le_qorder,
rationals_wf,
qle_wf,
qadd_wf,
qle_witness
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_functionElimination,
sqequalRule,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
natural_numberEquality,
applyEquality,
lambdaEquality,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality,
productElimination
Latex:
\mforall{}[a,b,c,d:\mBbbQ{}]. ((a + c) \mleq{} (b + d)) supposing ((c \mleq{} d) and (a \mleq{} b))
Date html generated:
2016_05_15-PM-10_59_57
Last ObjectModification:
2016_01_16-PM-09_31_21
Theory : rationals
Home
Index