Nuprl Lemma : q-square-non-neg
∀[q:ℚ]. (0 ≤ (q * q))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qmul: r * s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
guard: {T}
, 
cand: A c∧ B
Lemmas referenced : 
qle_witness, 
int-subtype-rationals, 
qmul_wf, 
rationals_wf, 
qless_wf, 
or_wf, 
and_wf, 
equal_wf, 
qmul-non-neg, 
qminus-positive, 
qless_trichot_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
minusEquality, 
dependent_functionElimination, 
productElimination, 
addLevel, 
orFunctionality, 
independent_pairFormation, 
independent_isectElimination, 
andLevelFunctionality, 
unionElimination, 
inrFormation, 
inlFormation, 
equalitySymmetry
Latex:
\mforall{}[q:\mBbbQ{}].  (0  \mleq{}  (q  *  q))
Date html generated:
2016_05_15-PM-10_58_57
Last ObjectModification:
2015_12_27-PM-07_50_26
Theory : rationals
Home
Index