Nuprl Lemma : q-square-non-neg

[q:ℚ]. (0 ≤ (q q))


Proof




Definitions occuring in Statement :  qle: r ≤ s qmul: s rationals: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q prop: and: P ∧ Q or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q uiff: uiff(P;Q) uimplies: supposing a guard: {T} cand: c∧ B
Lemmas referenced :  qle_witness int-subtype-rationals qmul_wf rationals_wf qless_wf or_wf and_wf equal_wf qmul-non-neg qminus-positive qless_trichot_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis applyEquality sqequalRule hypothesisEquality independent_functionElimination because_Cache minusEquality dependent_functionElimination productElimination addLevel orFunctionality independent_pairFormation independent_isectElimination andLevelFunctionality unionElimination inrFormation inlFormation equalitySymmetry

Latex:
\mforall{}[q:\mBbbQ{}].  (0  \mleq{}  (q  *  q))



Date html generated: 2016_05_15-PM-10_58_57
Last ObjectModification: 2015_12_27-PM-07_50_26

Theory : rationals


Home Index