Nuprl Lemma : qminus-positive

[r:ℚ]. uiff(0 < -(r);r < 0)


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B guard: {T} implies:  Q prop: rev_uimplies: rev_uimplies(P;Q) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iff_weakening_equal mon_ident_q qinverse_q qadd_comm_q qadd_wf rationals_wf qless_wf int-subtype-rationals qless_witness qmul_wf qadd_preserves_qless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache minusEquality natural_numberEquality hypothesis applyEquality sqequalRule hypothesisEquality productElimination independent_isectElimination independent_functionElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry lambdaEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[r:\mBbbQ{}].  uiff(0  <  -(r);r  <  0)



Date html generated: 2016_05_15-PM-10_54_41
Last ObjectModification: 2016_01_16-PM-09_34_21

Theory : rationals


Home Index