Nuprl Lemma : qadd_preserves_qle

[a,b,c:ℚ].  {uiff(a ≤ b;(c a) ≤ (c b))}


Proof




Definitions occuring in Statement :  qle: r ≤ s qadd: s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] guard: {T}
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: subtype_rel: A ⊆B true: True squash: T iff: ⇐⇒ Q
Lemmas referenced :  iff_weakening_equal mon_ident_q qinverse_q qadd_comm_q qadd_ac_1_q true_wf squash_wf int-subtype-rationals qmul_wf grp_op_preserves_le_qorder rationals_wf qle_wf qadd_wf qle_witness
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination minusEquality natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    \{uiff(a  \mleq{}  b;(c  +  a)  \mleq{}  (c  +  b))\}



Date html generated: 2016_05_15-PM-10_59_06
Last ObjectModification: 2016_01_16-PM-09_32_09

Theory : rationals


Home Index