Nuprl Lemma : qle_complement_qorder

[a,b:ℚ].  uiff(¬(a ≤ b);b < a)


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qless: r < s uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a qle: r ≤ s grp_lt: a < b set_lt: a <b guard: {T} oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| implies:  Q not: ¬A grp_leq: a ≤ b infix_ap: y false: False
Lemmas referenced :  grp_leq_complement qadd_grp_wf2 ocgrp_subtype_ocmon assert_witness set_blt_wf oset_of_ocmon_wf0 mon_subtype_grp_sig dmon_subtype_mon abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf dmon_wf mon_wf grp_sig_wf istype-assert grp_le_wf istype-void rationals_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule isect_memberFormation_alt independent_pairFormation hypothesisEquality productElimination independent_isectElimination instantiate independent_functionElimination functionIsType because_Cache lambdaFormation_alt voidElimination lambdaEquality_alt dependent_functionElimination functionIsTypeImplies inhabitedIsType independent_pairEquality isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(\mneg{}(a  \mleq{}  b);b  <  a)



Date html generated: 2020_05_20-AM-09_15_01
Last ObjectModification: 2020_01_27-PM-04_01_34

Theory : rationals


Home Index