Nuprl Lemma : expectation-rv-add

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  (E(n;X Y) (E(n;X) E(n;Y)) ∈ ℚ)


Proof




Definitions occuring in Statement :  expectation: E(n;F) rv-add: Y random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qadd: s rationals: nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: squash: T true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q implies:  Q random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace rv-scale: q*X rv-add: Y nat: rev_implies:  Q
Lemmas referenced :  expectation-linear int-subtype-rationals equal_wf squash_wf true_wf rationals_wf expectation_wf iff_weakening_equal qadd_wf qmul_wf qmul_ident random-variable_wf nat_wf finite-prob-space_wf int_seg_wf length_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality applyEquality sqequalRule because_Cache hyp_replacement equalitySymmetry lambdaEquality imageElimination equalityTransitivity universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination functionExtensionality functionEquality setElimination rename

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    (E(n;X  +  Y)  =  (E(n;X)  +  E(n;Y)))



Date html generated: 2018_05_22-AM-00_34_47
Last ObjectModification: 2017_07_26-PM-06_59_55

Theory : randomness


Home Index