Nuprl Lemma : expectation-rv-add
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  (E(n;X + Y) = (E(n;X) + E(n;Y)) ∈ ℚ)
Proof
Definitions occuring in Statement : 
expectation: E(n;F)
, 
rv-add: X + Y
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
qadd: r + s
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
rv-scale: q*X
, 
rv-add: X + Y
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
expectation-linear, 
int-subtype-rationals, 
equal_wf, 
squash_wf, 
true_wf, 
rationals_wf, 
expectation_wf, 
iff_weakening_equal, 
qadd_wf, 
qmul_wf, 
qmul_ident, 
random-variable_wf, 
nat_wf, 
finite-prob-space_wf, 
int_seg_wf, 
length_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
hyp_replacement, 
equalitySymmetry, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
functionExtensionality, 
functionEquality, 
setElimination, 
rename
Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    (E(n;X  +  Y)  =  (E(n;X)  +  E(n;Y)))
Date html generated:
2018_05_22-AM-00_34_47
Last ObjectModification:
2017_07_26-PM-06_59_55
Theory : randomness
Home
Index