Nuprl Lemma : subtype_rel-random-variable

[k:FinProbSpace]. ∀[n,m:ℕ].  RandomVariable(k;n) ⊆RandomVariable(k;m) supposing n ≤ m


Proof




Definitions occuring in Statement :  random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  random-variable: RandomVariable(p;n) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: finite-prob-space: FinProbSpace so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_dep_function int_seg_wf length_wf rationals_wf int_seg_subtype false_wf subtype_rel_self le_wf nat_wf finite-prob-space_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality independent_isectElimination because_Cache independent_pairFormation lambdaFormation axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[k:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    RandomVariable(k;n)  \msubseteq{}r  RandomVariable(k;m)  supposing  n  \mleq{}  m



Date html generated: 2016_05_15-PM-11_46_03
Last ObjectModification: 2015_12_28-PM-07_16_29

Theory : randomness


Home Index