Nuprl Lemma : qmul_over_minus_qrng

[a,b:ℚ].  (((-(a) b) -(a b) ∈ ℚ) ∧ ((a -(b)) -(a b) ∈ ℚ))


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] and: P ∧ Q minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_minus: -r infix_ap: y
Lemmas referenced :  rng_times_over_minus qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b:\mBbbQ{}].    (((-(a)  *  b)  =  -(a  *  b))  \mwedge{}  ((a  *  -(b))  =  -(a  *  b)))



Date html generated: 2020_05_20-AM-09_15_26
Last ObjectModification: 2020_02_03-PM-02_30_19

Theory : rationals


Home Index