Nuprl Lemma : non-neg-qmul

[a,b:ℚ].  (0 ≤ (a b)) supposing ((0 ≤ b) and (0 ≤ a))


Proof




Definitions occuring in Statement :  qle: r ≤ s qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q subtype_rel: A ⊆B prop: or: P ∨ Q all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q guard: {T} iff: ⇐⇒ Q cand: c∧ B true: True squash: T rev_implies:  Q
Lemmas referenced :  qle_witness int-subtype-rationals qmul_wf qle_wf rationals_wf or_wf qless_wf equal-wf-base-T qle-iff qmul-positive equal_wf squash_wf true_wf qmul_zero_qrng iff_weakening_equal member_wf qmul_comm_qrng
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalHypSubstitution independent_functionElimination hypothesis extract_by_obid isectElimination natural_numberEquality applyEquality sqequalRule hypothesisEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination baseClosed addLevel impliesFunctionality dependent_functionElimination productElimination independent_isectElimination functionEquality inlFormation inrFormation independent_pairFormation productEquality minusEquality hyp_replacement applyLambdaEquality lambdaEquality imageElimination universeEquality imageMemberEquality instantiate

Latex:
\mforall{}[a,b:\mBbbQ{}].    (0  \mleq{}  (a  *  b))  supposing  ((0  \mleq{}  b)  and  (0  \mleq{}  a))



Date html generated: 2018_05_21-PM-11_56_08
Last ObjectModification: 2017_07_26-PM-06_46_43

Theory : rationals


Home Index