Nuprl Lemma : non-neg-qmul
∀[a,b:ℚ].  (0 ≤ (a * b)) supposing ((0 ≤ b) and (0 ≤ a))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qmul: r * s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
true: True
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
qle_witness, 
int-subtype-rationals, 
qmul_wf, 
qle_wf, 
rationals_wf, 
or_wf, 
qless_wf, 
equal-wf-base-T, 
qle-iff, 
qmul-positive, 
equal_wf, 
squash_wf, 
true_wf, 
qmul_zero_qrng, 
iff_weakening_equal, 
member_wf, 
qmul_comm_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
independent_functionElimination, 
hypothesis, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
unionElimination, 
baseClosed, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
functionEquality, 
inlFormation, 
inrFormation, 
independent_pairFormation, 
productEquality, 
minusEquality, 
hyp_replacement, 
applyLambdaEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
instantiate
Latex:
\mforall{}[a,b:\mBbbQ{}].    (0  \mleq{}  (a  *  b))  supposing  ((0  \mleq{}  b)  and  (0  \mleq{}  a))
Date html generated:
2018_05_21-PM-11_56_08
Last ObjectModification:
2017_07_26-PM-06_46_43
Theory : rationals
Home
Index