Nuprl Lemma : rv-disjoint-compose
∀F,G:ℚ ⟶ ℚ. ∀p:FinProbSpace. ∀n:ℕ. ∀X,Y:RandomVariable(p;n).
  (rv-disjoint(p;n;X;Y) 
⇒ rv-disjoint(p;n;(X.F[X]) o X;(Y.G[Y]) o Y))
Proof
Definitions occuring in Statement : 
rv-compose: (x.F[x]) o X
, 
rv-disjoint: rv-disjoint(p;n;X;Y)
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
rationals: ℚ
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-disjoint: rv-disjoint(p;n;X;Y)
, 
member: t ∈ T
, 
or: P ∨ Q
, 
rv-compose: (x.F[x]) o X
, 
so_apply: x[s]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
random-variable: RandomVariable(p;n)
, 
p-outcome: Outcome
, 
guard: {T}
Lemmas referenced : 
all_wf, 
int_seg_wf, 
not_wf, 
equal_wf, 
p-outcome_wf, 
rationals_wf, 
rv-compose_wf, 
random-variable_wf, 
rv-disjoint_wf, 
nat_wf, 
finite-prob-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
inlFormation, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
functionEquality, 
intEquality, 
functionExtensionality, 
inrFormation
Latex:
\mforall{}F,G:\mBbbQ{}  {}\mrightarrow{}  \mBbbQ{}.  \mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y:RandomVariable(p;n).
    (rv-disjoint(p;n;X;Y)  {}\mRightarrow{}  rv-disjoint(p;n;(X.F[X])  o  X;(Y.G[Y])  o  Y))
Date html generated:
2018_05_22-AM-00_35_22
Last ObjectModification:
2017_07_26-PM-07_00_09
Theory : randomness
Home
Index