Nuprl Lemma : rv-disjoint-compose

F,G:ℚ ⟶ ℚ. ∀p:FinProbSpace. ∀n:ℕ. ∀X,Y:RandomVariable(p;n).
  (rv-disjoint(p;n;X;Y)  rv-disjoint(p;n;(X.F[X]) X;(Y.G[Y]) Y))


Proof




Definitions occuring in Statement :  rv-compose: (x.F[x]) X rv-disjoint: rv-disjoint(p;n;X;Y) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace rationals: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-disjoint: rv-disjoint(p;n;X;Y) member: t ∈ T or: P ∨ Q rv-compose: (x.F[x]) X so_apply: x[s] prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B random-variable: RandomVariable(p;n) p-outcome: Outcome guard: {T}
Lemmas referenced :  all_wf int_seg_wf not_wf equal_wf p-outcome_wf rationals_wf rv-compose_wf random-variable_wf rv-disjoint_wf nat_wf finite-prob-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality unionElimination inlFormation independent_functionElimination sqequalRule applyEquality introduction extract_by_obid isectElimination natural_numberEquality setElimination rename because_Cache lambdaEquality functionEquality intEquality functionExtensionality inrFormation

Latex:
\mforall{}F,G:\mBbbQ{}  {}\mrightarrow{}  \mBbbQ{}.  \mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X,Y:RandomVariable(p;n).
    (rv-disjoint(p;n;X;Y)  {}\mRightarrow{}  rv-disjoint(p;n;(X.F[X])  o  X;(Y.G[Y])  o  Y))



Date html generated: 2018_05_22-AM-00_35_22
Last ObjectModification: 2017_07_26-PM-07_00_09

Theory : randomness


Home Index