Nuprl Lemma : expectation-monotone-in-first

[p:FinProbSpace]. ∀[n,m:ℕ].  ∀[X:RandomVariable(p;n)]. (E(n;X) E(m;X) ∈ ℚsupposing n ≤ m


Proof




Definitions occuring in Statement :  expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace rationals: nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q expectation: E(n;F) ycomb: Y eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace subtype_rel: A ⊆B guard: {T} int_seg: {i..j-} lelt: i ≤ j < k squash: T p-outcome: Outcome sq_stable: SqStable(P) nat_plus: + true: True iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf random-variable_wf le_wf false_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf finite-prob-space_wf expectation-constant null-seq_wf int_seg_wf length_wf rationals_wf subtype_rel-random-variable p-outcome_wf equal_wf int_seg_properties decidable__equal_int lelt_wf eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf equal-wf-T-base weighted-sum_wf2 squash_wf true_wf expectation_wf sq_stable__and sq_stable__le sq_stable__less_than member-less_than rv-shift_wf iff_weakening_equal uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache dependent_set_memberEquality unionElimination applyEquality functionEquality hyp_replacement applyLambdaEquality functionExtensionality productElimination baseApply closedConclusion baseClosed imageElimination universeEquality imageMemberEquality equalityElimination impliesFunctionality

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    \mforall{}[X:RandomVariable(p;n)].  (E(n;X)  =  E(m;X))  supposing  n  \mleq{}  m



Date html generated: 2018_05_22-AM-00_36_17
Last ObjectModification: 2017_07_26-PM-07_00_26

Theory : randomness


Home Index