Nuprl Lemma : qle_reflexivity
∀[a:ℚ]. (a ≤ a)
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
Lemmas referenced : 
qle_weakening_eq_qorder, 
qle_witness, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination
Latex:
\mforall{}[a:\mBbbQ{}].  (a  \mleq{}  a)
Date html generated:
2016_05_15-PM-11_05_42
Last ObjectModification:
2015_12_27-PM-07_45_35
Theory : rationals
Home
Index