Nuprl Lemma : expectation-rv-scale
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X:RandomVariable(p;n)]. ∀[q:ℚ]. (E(n;q*X) = (q * E(n;X)) ∈ ℚ)
Proof
Definitions occuring in Statement :
expectation: E(n;F)
,
rv-scale: q*X
,
random-variable: RandomVariable(p;n)
,
finite-prob-space: FinProbSpace
,
qmul: r * s
,
rationals: ℚ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
squash: ↓T
,
rv-const: a
,
rv-scale: q*X
,
rv-add: X + Y
,
random-variable: RandomVariable(p;n)
,
finite-prob-space: FinProbSpace
,
qmul: r * s
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
nat: ℕ
,
and: P ∧ Q
,
true: True
,
uimplies: b supposing a
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
expectation-linear,
rv-const_wf,
int-subtype-rationals,
equal_wf,
squash_wf,
true_wf,
expectation_wf,
mon_ident_q,
qmul_wf,
int_seg_wf,
length_wf,
rationals_wf,
random-variable_wf,
nat_wf,
finite-prob-space_wf,
qadd_wf,
qmul_zero_qrng,
qmul_comm_qrng,
qadd_comm_q,
iff_weakening_equal
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
natural_numberEquality,
applyEquality,
sqequalRule,
because_Cache,
hyp_replacement,
equalitySymmetry,
lambdaEquality,
imageElimination,
equalityTransitivity,
universeEquality,
functionExtensionality,
functionEquality,
setElimination,
rename,
productElimination,
imageMemberEquality,
baseClosed,
independent_isectElimination,
independent_functionElimination
Latex:
\mforall{}[p:FinProbSpace]. \mforall{}[n:\mBbbN{}]. \mforall{}[X:RandomVariable(p;n)]. \mforall{}[q:\mBbbQ{}]. (E(n;q*X) = (q * E(n;X)))
Date html generated:
2018_05_22-AM-00_34_49
Last ObjectModification:
2017_07_26-PM-06_59_56
Theory : randomness
Home
Index