Nuprl Lemma : q-square-positive

[q:ℚ]. 0 < supposing ¬(q 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q not: ¬A false: False rev_implies:  Q
Lemmas referenced :  q-square-non-neg qless_witness qmul_wf not_wf equal_wf rationals_wf qle_iff_lt_or_eq_qorder int-subtype-rationals qmul-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis applyEquality because_Cache sqequalRule independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry dependent_functionElimination productElimination unionElimination voidElimination

Latex:
\mforall{}[q:\mBbbQ{}].  0  <  q  *  q  supposing  \mneg{}(q  =  0)



Date html generated: 2016_05_15-PM-10_59_02
Last ObjectModification: 2015_12_27-PM-07_51_06

Theory : rationals


Home Index