Step
*
of Lemma
ws-lower-bound
∀[p:FinProbSpace]. ∀[F:Outcome ⟶ ℚ]. ∀[q:ℚ]. q ≤ weighted-sum(p;F) supposing ∀x:Outcome. (q ≤ (F x))
BY
{ (Unfolds ``finite-prob-space p-outcome`` 0
THEN Auto
THEN ((InstLemma `ws-monotone` [⌜p⌝; ⌜λs.q⌝; ⌜F⌝])⋅ THENA Auto)
THEN Reduce 0
THEN Try (((DVar `p' THEN Unhide) THEN Auto THEN RWO "l_all_iff" 3 THEN Complete (Auto)))) }
1
1. p : {p:ℚ List| (Σ0 ≤ i < ||p||. p[i] = 1 ∈ ℚ) ∧ (∀q∈p.0 ≤ q)}
2. F : ℕ||p|| ⟶ ℚ
3. q : ℚ
4. ∀x:ℕ||p||. (q ≤ (F x))
5. weighted-sum(p;λs.q) ≤ weighted-sum(p;F)
⊢ q ≤ weighted-sum(p;F)
Latex:
Latex:
\mforall{}[p:FinProbSpace]. \mforall{}[F:Outcome {}\mrightarrow{} \mBbbQ{}]. \mforall{}[q:\mBbbQ{}].
q \mleq{} weighted-sum(p;F) supposing \mforall{}x:Outcome. (q \mleq{} (F x))
By
Latex:
(Unfolds ``finite-prob-space p-outcome`` 0
THEN Auto
THEN ((InstLemma `ws-monotone` [\mkleeneopen{}p\mkleeneclose{}; \mkleeneopen{}\mlambda{}s.q\mkleeneclose{}; \mkleeneopen{}F\mkleeneclose{}])\mcdot{} THENA Auto)
THEN Reduce 0
THEN Try (((DVar `p' THEN Unhide) THEN Auto THEN RWO "l\_all\_iff" 3 THEN Complete (Auto))))
Home
Index