Nuprl Lemma : ws-lower-bound

[p:FinProbSpace]. ∀[F:Outcome ⟶ ℚ]. ∀[q:ℚ].  q ≤ weighted-sum(p;F) supposing ∀x:Outcome. (q ≤ (F x))


Proof




Definitions occuring in Statement :  weighted-sum: weighted-sum(p;F) p-outcome: Outcome finite-prob-space: FinProbSpace qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  p-outcome: Outcome finite-prob-space: FinProbSpace uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q subtype_rel: A ⊆B sq_stable: SqStable(P) and: P ∧ Q so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q squash: T guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b true: True
Lemmas referenced :  ws-monotone int_seg_wf length_wf rationals_wf sq_stable_from_decidable qle_wf decidable__qle l_all_iff l_member_wf qle_witness weighted-sum_wf2 all_wf set_wf list_wf equal-wf-T-base qsum_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma l_all_wf2 int-subtype-rationals squash_wf true_wf ws-constant p-outcome_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis lambdaEquality hypothesisEquality natural_numberEquality independent_isectElimination lambdaFormation applyEquality independent_functionElimination dependent_functionElimination productElimination setEquality imageMemberEquality baseClosed imageElimination functionExtensionality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality productEquality unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll hyp_replacement

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[F:Outcome  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[q:\mBbbQ{}].
    q  \mleq{}  weighted-sum(p;F)  supposing  \mforall{}x:Outcome.  (q  \mleq{}  (F  x))



Date html generated: 2016_10_26-AM-06_49_35
Last ObjectModification: 2016_07_12-AM-08_04_12

Theory : randomness


Home Index