Step
*
1
1
1
1
of Lemma
boundary-singleton-complex
1. k : ℕ
2. n : ℕ
3. c : {c:ℚCube(k)| dim(c) = n ∈ ℤ}
4. ↑Inhabited(c)
5. v : {f:ℚCube(k)| f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)} List
6. remove-repeats(rc-deq(k);rat-cube-faces(k;c)) = v ∈ ({f:ℚCube(k)| f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)} List)
7. v ∈ ℚCube(k) List
8. x : ℚCube(k)
9. (x ∈ remove-repeats(rc-deq(k);rat-cube-faces(k;c)))
⊢ ↑in-complex-boundary(k;x;[c])
BY
{ (GenListD (-1)
THEN (RWO "member-rat-cube-faces" (-1) THEN Auto)
THEN RepUR ``in-complex-boundary`` 0
THEN AutoSplit) }
1
1. k : ℕ
2. n : ℕ
3. c : {c:ℚCube(k)| dim(c) = n ∈ ℤ}
4. ↑Inhabited(c)
5. v : {f:ℚCube(k)| f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)} List
6. remove-repeats(rc-deq(k);rat-cube-faces(k;c)) = v ∈ ({f:ℚCube(k)| f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)} List)
7. v ∈ ℚCube(k) List
8. x : ℚCube(k)
9. ¬↑is-rat-cube-face(k;x;c)
10. x ≤ c
11. dim(x) = (dim(c) - 1) ∈ ℤ
⊢ ↑isOdd(0)
Latex:
Latex:
1. k : \mBbbN{}
2. n : \mBbbN{}
3. c : \{c:\mBbbQ{}Cube(k)| dim(c) = n\}
4. \muparrow{}Inhabited(c)
5. v : \{f:\mBbbQ{}Cube(k)| f \mleq{} c \mwedge{} (dim(f) = (dim(c) - 1))\} List
6. remove-repeats(rc-deq(k);rat-cube-faces(k;c)) = v
7. v \mmember{} \mBbbQ{}Cube(k) List
8. x : \mBbbQ{}Cube(k)
9. (x \mmember{} remove-repeats(rc-deq(k);rat-cube-faces(k;c)))
\mvdash{} \muparrow{}in-complex-boundary(k;x;[c])
By
Latex:
(GenListD (-1)
THEN (RWO "member-rat-cube-faces" (-1) THEN Auto)
THEN RepUR ``in-complex-boundary`` 0
THEN AutoSplit)
Home
Index