Nuprl Lemma : boundary-singleton-complex
∀[k,n:ℕ]. ∀[c:{c:ℚCube(k)| dim(c) = n ∈ ℤ} ].  (∂(singleton-complex(c)) ~ remove-repeats(rc-deq(k);rat-cube-faces(k;c)))
Proof
Definitions occuring in Statement : 
singleton-complex: singleton-complex(c)
, 
rat-complex-boundary: ∂(K)
, 
rat-cube-faces: rat-cube-faces(k;c)
, 
rat-cube-dimension: dim(c)
, 
rc-deq: rc-deq(k)
, 
rational-cube: ℚCube(k)
, 
remove-repeats: remove-repeats(eq;L)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
singleton-complex: singleton-complex(c)
, 
rat-complex-boundary: ∂(K)
, 
face-complex: face-complex(k;L)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
concat: concat(ll)
, 
prop: ℙ
, 
rat-cube-sub-complex: rat-cube-sub-complex(P;L)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
in-complex-boundary: in-complex-boundary(k;f;K)
, 
assert: ↑b
, 
isOdd: isOdd(n)
, 
eq_int: (i =z j)
, 
modulus: a mod n
, 
remainder: n rem m
, 
length: ||as||
, 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
false: False
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rat-cube-dimension: dim(c)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
rational-cube_wf, 
istype-int, 
rat-cube-dimension_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
le_wf, 
istype-nat, 
map_cons_lemma, 
istype-void, 
map_nil_lemma, 
inhabited-rat-cube_wf, 
equal-wf-T-base, 
bool_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
reduce_cons_lemma, 
reduce_nil_lemma, 
append_back_nil, 
rat-cube-face_wf, 
equal-wf-base, 
subtract_wf, 
rat-cube-faces_wf, 
filter_trivial, 
in-complex-boundary_wf, 
cons_wf, 
nil_wf, 
remove-repeats_wf, 
rc-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
subtype_rel_list, 
l_all_iff, 
l_member_wf, 
squash_wf, 
true_wf, 
list_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
member-remove-repeats, 
member-rat-cube-faces, 
filter_cons_lemma, 
filter_nil_lemma, 
is-rat-cube-face_wf, 
length_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
length_of_nil_lemma, 
assert-is-rat-cube-face, 
bool_cases, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
axiomSqEquality, 
setIsType, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityIstype, 
applyEquality, 
sqequalRule, 
intEquality, 
lambdaEquality_alt, 
minusEquality, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalBase, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
voidElimination, 
because_Cache, 
equalityTransitivity, 
baseClosed, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_functionElimination, 
setEquality, 
productEquality, 
productIsType, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
applyLambdaEquality, 
dependent_pairFormation_alt, 
promote_hyp, 
cumulativity, 
approximateComputation, 
int_eqEquality, 
independent_pairFormation
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  dim(c)  =  n\}  ].
    (\mpartial{}(singleton-complex(c))  \msim{}  remove-repeats(rc-deq(k);rat-cube-faces(k;c)))
Date html generated:
2020_05_20-AM-09_22_31
Last ObjectModification:
2019_11_13-PM-07_08_08
Theory : rationals
Home
Index