Nuprl Lemma : boundary-singleton-complex

[k,n:ℕ]. ∀[c:{c:ℚCube(k)| dim(c) n ∈ ℤ].  (∂(singleton-complex(c)) remove-repeats(rc-deq(k);rat-cube-faces(k;c)))


Proof




Definitions occuring in Statement :  singleton-complex: singleton-complex(c) rat-complex-boundary: (K) rat-cube-faces: rat-cube-faces(k;c) rat-cube-dimension: dim(c) rc-deq: rc-deq(k) rational-cube: Cube(k) remove-repeats: remove-repeats(eq;L) nat: uall: [x:A]. B[x] set: {x:A| B[x]}  int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] nat: so_apply: x[s] uimplies: supposing a singleton-complex: singleton-complex(c) rat-complex-boundary: (K) face-complex: face-complex(k;L) all: x:A. B[x] top: Top implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff concat: concat(ll) prop: rat-cube-sub-complex: rat-cube-sub-complex(P;L) iff: ⇐⇒ Q rev_implies:  Q squash: T true: True guard: {T} in-complex-boundary: in-complex-boundary(k;f;K) assert: b isOdd: isOdd(n) eq_int: (i =z j) modulus: mod n remainder: rem m length: ||as|| list_ind: list_ind cons: [a b] nil: [] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb false: False not: ¬A rev_uimplies: rev_uimplies(P;Q) rat-cube-dimension: dim(c) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  rational-cube_wf istype-int rat-cube-dimension_wf set_subtype_base lelt_wf int_subtype_base le_wf istype-nat map_cons_lemma istype-void map_nil_lemma inhabited-rat-cube_wf equal-wf-T-base bool_wf assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot reduce_cons_lemma reduce_nil_lemma append_back_nil rat-cube-face_wf equal-wf-base subtract_wf rat-cube-faces_wf filter_trivial in-complex-boundary_wf cons_wf nil_wf remove-repeats_wf rc-deq_wf strong-subtype-deq-subtype strong-subtype-set2 subtype_rel_list l_all_iff l_member_wf squash_wf true_wf list_wf istype-universe subtype_rel_self iff_weakening_equal member-remove-repeats member-rat-cube-faces filter_cons_lemma filter_nil_lemma is-rat-cube-face_wf length_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot length_of_nil_lemma assert-is-rat-cube-face bool_cases nat_properties full-omega-unsat intformand_wf intformeq_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis axiomSqEquality setIsType universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalityIstype applyEquality sqequalRule intEquality lambdaEquality_alt minusEquality natural_numberEquality addEquality setElimination rename independent_isectElimination sqequalBase equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination voidElimination because_Cache equalityTransitivity baseClosed lambdaFormation_alt unionElimination equalityElimination productElimination independent_functionElimination setEquality productEquality productIsType imageElimination instantiate universeEquality imageMemberEquality applyLambdaEquality dependent_pairFormation_alt promote_hyp cumulativity approximateComputation int_eqEquality independent_pairFormation

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[c:\{c:\mBbbQ{}Cube(k)|  dim(c)  =  n\}  ].
    (\mpartial{}(singleton-complex(c))  \msim{}  remove-repeats(rc-deq(k);rat-cube-faces(k;c)))



Date html generated: 2020_05_20-AM-09_22_31
Last ObjectModification: 2019_11_13-PM-07_08_08

Theory : rationals


Home Index