Nuprl Lemma : rc-deq_wf

[k:ℕ]. (rc-deq(k) ∈ EqDecider(ℚCube(k)))


Proof




Definitions occuring in Statement :  rc-deq: rc-deq(k) rational-cube: Cube(k) deq: EqDecider(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  rational-cube: Cube(k) subtype_rel: A ⊆B rc-deq: rc-deq(k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf deq_wf subtype_rel_self ri-deq_wf rational-interval_wf Error :finite-fun-deq_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality applyEquality hypothesisEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  (rc-deq(k)  \mmember{}  EqDecider(\mBbbQ{}Cube(k)))



Date html generated: 2019_10_29-AM-07_48_56
Last ObjectModification: 2019_10_18-PM-00_04_31

Theory : rationals


Home Index