Nuprl Lemma : rc-deq_wf
∀[k:ℕ]. (rc-deq(k) ∈ EqDecider(ℚCube(k)))
Proof
Definitions occuring in Statement : 
rc-deq: rc-deq(k)
, 
rational-cube: ℚCube(k)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
rational-cube: ℚCube(k)
, 
subtype_rel: A ⊆r B
, 
rc-deq: rc-deq(k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
deq_wf, 
subtype_rel_self, 
ri-deq_wf, 
rational-interval_wf, 
Error :finite-fun-deq_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  (rc-deq(k)  \mmember{}  EqDecider(\mBbbQ{}Cube(k)))
Date html generated:
2019_10_29-AM-07_48_56
Last ObjectModification:
2019_10_18-PM-00_04_31
Theory : rationals
Home
Index