Nuprl Lemma : member-rat-cube-faces
∀k:ℕ. ∀c:ℚCube(k).
∀f:ℚCube(k). ((f ∈ rat-cube-faces(k;c))
⇐⇒ f ≤ c ∧ (dim(f) = (dim(c) - 1) ∈ ℤ)) supposing ↑Inhabited(c)
Proof
Definitions occuring in Statement :
rat-cube-faces: rat-cube-faces(k;c)
,
rat-cube-dimension: dim(c)
,
inhabited-rat-cube: Inhabited(c)
,
rat-cube-face: c ≤ d
,
rational-cube: ℚCube(k)
,
l_member: (x ∈ l)
,
nat: ℕ
,
assert: ↑b
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
sq_stable: SqStable(P)
,
guard: {T}
,
squash: ↓T
,
true: True
,
top: Top
,
false: False
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
or: P ∨ Q
,
decidable: Dec(P)
,
ge: i ≥ j
,
cand: A c∧ B
,
exists: ∃x:A. B[x]
,
l_member: (x ∈ l)
,
rev_implies: P
⇐ Q
,
so_apply: x[s]
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
Lemmas referenced :
decidable__rat-cube-face,
sq_stable_from_decidable,
istype-universe,
equal_wf,
iff_weakening_equal,
subtype_rel_self,
true_wf,
squash_wf,
int_formula_prop_wf,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_and_lemma,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
full-omega-unsat,
decidable__le,
nat_properties,
select_wf,
istype-nat,
istype-assert,
implies-member-rat-cube-faces,
subtract_wf,
int_subtype_base,
istype-int,
lelt_wf,
set_subtype_base,
rat-cube-dimension_wf,
equal-wf-base,
rat-cube-face_wf,
subtype_rel_list,
rat-cube-faces_wf,
rational-cube_wf,
l_member_wf,
inhabited-rat-cube_wf,
assert_witness
Rules used in proof :
promote_hyp,
universeEquality,
instantiate,
baseClosed,
imageMemberEquality,
imageElimination,
voidElimination,
isect_memberEquality_alt,
int_eqEquality,
dependent_pairFormation_alt,
approximateComputation,
unionElimination,
dependent_set_memberEquality_alt,
productElimination,
dependent_functionElimination,
sqequalBase,
equalityIstype,
productIsType,
setIsType,
because_Cache,
equalitySymmetry,
equalityTransitivity,
inhabitedIsType,
setElimination,
addEquality,
natural_numberEquality,
minusEquality,
lambdaEquality_alt,
sqequalRule,
intEquality,
productEquality,
setEquality,
applyEquality,
independent_isectElimination,
universeIsType,
independent_pairFormation,
rename,
independent_functionElimination,
hypothesis,
hypothesisEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
isect_memberFormation_alt,
lambdaFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}. \mforall{}c:\mBbbQ{}Cube(k).
\mforall{}f:\mBbbQ{}Cube(k). ((f \mmember{} rat-cube-faces(k;c)) \mLeftarrow{}{}\mRightarrow{} f \mleq{} c \mwedge{} (dim(f) = (dim(c) - 1)))
supposing \muparrow{}Inhabited(c)
Date html generated:
2019_10_29-AM-07_57_34
Last ObjectModification:
2019_10_18-PM-06_36_16
Theory : rationals
Home
Index