Nuprl Lemma : implies-member-rat-cube-faces

k:ℕ. ∀c:ℚCube(k).
  ∀f:{f:ℚCube(k)| f ≤ c ∧ (dim(f) (dim(c) 1) ∈ ℤ)} (f ∈ rat-cube-faces(k;c)) supposing ↑Inhabited(c)


Proof




Definitions occuring in Statement :  rat-cube-faces: rat-cube-faces(k;c) rat-cube-dimension: dim(c) inhabited-rat-cube: Inhabited(c) rat-cube-face: c ≤ d rational-cube: Cube(k) l_member: (x ∈ l) nat: assert: b uimplies: supposing a all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  pi2: snd(t) upper-rc-face: upper-rc-face(c;j) nequal: a ≠ b ∈  pi1: fst(t) lower-rc-face: lower-rc-face(c;j) rat-interval-face: I ≤ J rational-interval: Interval bnot: ¬bb bfalse: ff it: unit: Unit bool: 𝔹 less_than': less_than'(a;b) eq_int: (i =z j) subtract: m uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) true: True btrue: tt ifthenelse: if then else fi  assert: b rat-cube-dimension: dim(c) rat-cube-face: c ≤ d so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B rational-cube: Cube(k) nat: rat-cube-faces: rat-cube-faces(k;c) squash: T sq_stable: SqStable(P) cand: c∧ B and: P ∧ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  member_upto2 rational-interval_wf istype-universe equal_wf rat-point-interval_wf member_singleton cons_member le_wf int_term_value_add_lemma itermAdd_wf sum_le neg_assert_of_eq_int assert-bnot bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert add_functionality_wrt_eq iff_weakening_equal subtype_rel_self true_wf squash_wf less_than_wf ifthenelse_wf sum_wf istype-false int_seg_subtype_nat Error :isolate_summand2,  false_wf subtract-is-int-iff decidable__not decidable__cand not_wf int_seg_cases int_seg_subtype_special int_term_value_subtract_lemma int_formula_prop_eq_lemma itermSubtract_wf intformeq_wf decidable__equal_int equal-wf-base decidable__exists_int_seg rat-interval-face-dimension assert-inhabited-rat-cube istype-true btrue_wf iff_imp_equal_bool bool_subtype_base bool_wf subtype_base_sq inhabited-rat-cube-face istype-nat subtract_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf l_member_wf member-mapfilter istype-assert nil_wf upper-rc-face_wf istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties lower-rc-face_wf cons_wf rational-cube_wf list_wf rat-interval-dimension_wf eq_int_wf upto_wf int_seg_wf mapfilter_wf member-concat decidable__rat-cube-face rat-cube-face_wf sq_stable_from_decidable inhabited-rat-cube_wf assert_witness
Rules used in proof :  functionExtensionality unionIsType inrFormation_alt inlFormation_alt functionIsType hyp_replacement equalityElimination universeEquality closedConclusion baseApply pointwiseFunctionality productEquality hypothesis_subsumption applyLambdaEquality cumulativity instantiate sqequalBase addEquality minusEquality intEquality equalityIstype promote_hyp setIsType productIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation independent_isectElimination unionElimination dependent_set_memberEquality_alt universeIsType equalitySymmetry equalityTransitivity inhabitedIsType applyEquality lambdaEquality_alt natural_numberEquality because_Cache independent_pairFormation imageElimination baseClosed imageMemberEquality sqequalRule productElimination dependent_functionElimination setElimination rename independent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).
    \mforall{}f:\{f:\mBbbQ{}Cube(k)|  f  \mleq{}  c  \mwedge{}  (dim(f)  =  (dim(c)  -  1))\}  .  (f  \mmember{}  rat-cube-faces(k;c)) 
    supposing  \muparrow{}Inhabited(c)



Date html generated: 2019_10_29-AM-07_57_27
Last ObjectModification: 2019_10_18-PM-06_30_13

Theory : rationals


Home Index