Nuprl Lemma : member-concat

[T:Type]. ∀ll:T List List. ∀x:T.  ((x ∈ concat(ll)) ⇐⇒ ∃l:T List. ((l ∈ ll) ∧ (x ∈ l)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) concat: concat(ll) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] implies:  Q concat: concat(ll) top: Top iff: ⇐⇒ Q false: False rev_implies:  Q exists: x:A. B[x] or: P ∨ Q cand: c∧ B guard: {T}
Lemmas referenced :  list_induction list_wf all_wf iff_wf l_member_wf concat_wf exists_wf reduce_nil_lemma false_wf nil_member nil_wf reduce_cons_lemma or_wf equal_wf cons_member cons_wf member_append append_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality productEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation productElimination addLevel allFunctionality impliesFunctionality because_Cache existsFunctionality andLevelFunctionality existsLevelFunctionality rename universeEquality unionElimination dependent_pairFormation inlFormation inrFormation equalitySymmetry hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}ll:T  List  List.  \mforall{}x:T.    ((x  \mmember{}  concat(ll))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l:T  List.  ((l  \mmember{}  ll)  \mwedge{}  (x  \mmember{}  l)))



Date html generated: 2016_10_21-AM-10_33_57
Last ObjectModification: 2016_07_12-AM-05_46_02

Theory : list_1


Home Index