Nuprl Lemma : rat-interval-dimension_wf
∀[I:ℚInterval]. (dim(I) ∈ ℕ2)
Proof
Definitions occuring in Statement : 
rat-interval-dimension: dim(I)
, 
rational-interval: ℚInterval
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
false: False
, 
prop: ℙ
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
rational-interval: ℚInterval
, 
rat-interval-dimension: dim(I)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rational-interval_wf, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_wf, 
q_le_wf, 
ifthenelse_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
productIsType, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
hypothesis, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
spreadEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:\mBbbQ{}Interval].  (dim(I)  \mmember{}  \mBbbN{}2)
Date html generated:
2019_10_29-AM-07_47_55
Last ObjectModification:
2019_10_17-PM-01_55_25
Theory : rationals
Home
Index