Nuprl Lemma : rat-interval-dimension_wf

[I:ℚInterval]. (dim(I) ∈ ℕ2)


Proof




Definitions occuring in Statement :  rat-interval-dimension: dim(I) rational-interval: Interval int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} rational-interval: Interval rat-interval-dimension: dim(I) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rational-interval_wf istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le int_seg_wf q_le_wf ifthenelse_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality productIsType universeIsType voidElimination isect_memberEquality_alt lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality_alt natural_numberEquality hypothesis isectElimination extract_by_obid hypothesisEquality independent_pairEquality thin productElimination sqequalHypSubstitution spreadEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:\mBbbQ{}Interval].  (dim(I)  \mmember{}  \mBbbN{}2)



Date html generated: 2019_10_29-AM-07_47_55
Last ObjectModification: 2019_10_17-PM-01_55_25

Theory : rationals


Home Index