Nuprl Lemma : upper-rc-face_wf

[k:ℕ]. ∀[c:ℚCube(k)]. ∀[j:ℕk].  (upper-rc-face(c;j) ∈ ℚCube(k))


Proof




Definitions occuring in Statement :  upper-rc-face: upper-rc-face(c;j) rational-cube: Cube(k) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  nat: pi2: snd(t) rational-interval: Interval implies:  Q all: x:A. B[x] int_seg: {i..j-} rational-cube: Cube(k) upper-rc-face: upper-rc-face(c;j) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf int_seg_wf rat-point-interval_wf rational-interval_wf eq_int_wf ifthenelse_wf
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt natural_numberEquality universeIsType axiomEquality independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype sqequalRule productElimination lambdaFormation_alt inhabitedIsType applyEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].  \mforall{}[j:\mBbbN{}k].    (upper-rc-face(c;j)  \mmember{}  \mBbbQ{}Cube(k))



Date html generated: 2019_10_29-AM-07_56_37
Last ObjectModification: 2019_10_17-PM-03_34_46

Theory : rationals


Home Index