Nuprl Lemma : upper-rc-face_wf
∀[k:ℕ]. ∀[c:ℚCube(k)]. ∀[j:ℕk].  (upper-rc-face(c;j) ∈ ℚCube(k))
Proof
Definitions occuring in Statement : 
upper-rc-face: upper-rc-face(c;j)
, 
rational-cube: ℚCube(k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
nat: ℕ
, 
pi2: snd(t)
, 
rational-interval: ℚInterval
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_seg: {i..j-}
, 
rational-cube: ℚCube(k)
, 
upper-rc-face: upper-rc-face(c;j)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
int_seg_wf, 
rat-point-interval_wf, 
rational-interval_wf, 
eq_int_wf, 
ifthenelse_wf
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
natural_numberEquality, 
universeIsType, 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
sqequalRule, 
productElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaEquality_alt, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].  \mforall{}[j:\mBbbN{}k].    (upper-rc-face(c;j)  \mmember{}  \mBbbQ{}Cube(k))
Date html generated:
2019_10_29-AM-07_56_37
Last ObjectModification:
2019_10_17-PM-03_34_46
Theory : rationals
Home
Index