Nuprl Lemma : rat-cube-dimension_wf

[k:ℕ]. ∀[c:ℚCube(k)].  (dim(c) ∈ {-1..k 1-})


Proof




Definitions occuring in Statement :  rat-cube-dimension: dim(c) rational-cube: Cube(k) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T add: m minus: -n natural_number: $n
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) less_than': less_than'(a;b) guard: {T} squash: T less_than: a < b le: A ≤ B false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  bfalse: ff nat: lelt: i ≤ j < k so_apply: x[s] subtype_rel: A ⊆B rational-cube: Cube(k) so_lambda: λ2x.t[x] int_seg: {i..j-} ifthenelse: if then else fi  uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] rat-cube-dimension: dim(c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_weakening less_than_functionality int_term_value_mul_lemma itermMultiply_wf sum_bound int_seg_properties non_neg_sum istype-nat rational-cube_wf int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf intformless_wf intformand_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le nat_properties assert_of_bnot eqff_to_assert not_wf bnot_wf assert_wf bool_wf equal-wf-T-base uiff_transitivity istype-less_than istype-le int_seg_wf rat-interval-dimension_wf sum_wf eqtt_to_assert inhabited-rat-cube_wf
Rules used in proof :  multiplyEquality applyLambdaEquality imageElimination isectIsTypeImplies axiomEquality equalityIstype int_eqEquality voidElimination isect_memberEquality_alt dependent_pairFormation_alt approximateComputation dependent_functionElimination independent_functionElimination baseClosed equalitySymmetry equalityTransitivity rename setElimination addEquality minusEquality productIsType independent_pairFormation natural_numberEquality universeIsType applyEquality lambdaEquality_alt dependent_set_memberEquality_alt independent_isectElimination productElimination because_Cache equalityElimination unionElimination lambdaFormation_alt inhabitedIsType hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    (dim(c)  \mmember{}  \{-1..k  +  1\msupminus{}\})



Date html generated: 2019_10_29-AM-07_52_02
Last ObjectModification: 2019_10_17-PM-04_41_41

Theory : rationals


Home Index