Nuprl Lemma : rat-interval-face-dimension
∀J:ℚInterval. ((↑Inhabited(J)) 
⇒ (∀I:ℚInterval. (I ≤ J 
⇒ ((I = J ∈ ℚInterval) ∨ (dim(I) = (dim(J) - 1) ∈ ℤ)))))
Proof
Definitions occuring in Statement : 
rat-interval-dimension: dim(I)
, 
inhabited-rat-interval: Inhabited(I)
, 
rat-interval-face: I ≤ J
, 
rational-interval: ℚInterval
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rat-interval-dimension: dim(I)
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
rat-point-interval: [a]
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
member: t ∈ T
, 
inhabited-rat-interval: Inhabited(I)
, 
rat-interval-face: I ≤ J
, 
rational-interval: ℚInterval
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
rat-interval-dimension-single, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert-q_less-eq, 
eqtt_to_assert, 
q_less_wf, 
qle-iff, 
assert-q_le-eq, 
subtract_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-interval-dimension_wf, 
istype-int, 
iff_weakening_equal, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
q_le_wf, 
istype-assert, 
rational-interval_wf, 
subtype_rel_self, 
rat-point-interval_wf, 
decidable__equal_rationals
Rules used in proof : 
independent_pairFormation, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
inrFormation_alt, 
cumulativity, 
promote_hyp, 
dependent_pairFormation_alt, 
equalityElimination, 
voidElimination, 
sqequalBase, 
rename, 
setElimination, 
intEquality, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
lambdaEquality_alt, 
inlFormation_alt, 
universeIsType, 
applyEquality, 
independent_pairEquality, 
because_Cache, 
isectElimination, 
inhabitedIsType, 
equalityIstype, 
unionIsType, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}J:\mBbbQ{}Interval.  ((\muparrow{}Inhabited(J))  {}\mRightarrow{}  (\mforall{}I:\mBbbQ{}Interval.  (I  \mleq{}  J  {}\mRightarrow{}  ((I  =  J)  \mvee{}  (dim(I)  =  (dim(J)  -  1))))))
Date html generated:
2019_10_29-AM-07_48_08
Last ObjectModification:
2019_10_18-AM-10_52_31
Theory : rationals
Home
Index