Nuprl Lemma : rat-interval-face-dimension

J:ℚInterval. ((↑Inhabited(J))  (∀I:ℚInterval. (I ≤  ((I J ∈ ℚInterval) ∨ (dim(I) (dim(J) 1) ∈ ℤ)))))


Proof




Definitions occuring in Statement :  rat-interval-dimension: dim(I) inhabited-rat-interval: Inhabited(I) rat-interval-face: I ≤ J rational-interval: Interval assert: b all: x:A. B[x] implies:  Q or: P ∨ Q subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) assert: b bnot: ¬bb sq_type: SQType(T) exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rat-interval-dimension: dim(I) false: False not: ¬A uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} rat-point-interval: [a] rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a true: True prop: squash: T subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q or: P ∨ Q decidable: Dec(P) member: t ∈ T inhabited-rat-interval: Inhabited(I) rat-interval-face: I ≤ J rational-interval: Interval all: x:A. B[x]
Lemmas referenced :  int_seg_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int rat-interval-dimension-single assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert-q_less-eq eqtt_to_assert q_less_wf qle-iff assert-q_le-eq subtract_wf int_subtype_base lelt_wf set_subtype_base rat-interval-dimension_wf istype-int iff_weakening_equal istype-universe true_wf squash_wf equal_wf q_le_wf istype-assert rational-interval_wf subtype_rel_self rat-point-interval_wf decidable__equal_rationals
Rules used in proof :  independent_pairFormation isect_memberEquality_alt int_eqEquality approximateComputation inrFormation_alt cumulativity promote_hyp dependent_pairFormation_alt equalityElimination voidElimination sqequalBase rename setElimination intEquality independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality universeEquality instantiate equalitySymmetry equalityTransitivity imageElimination lambdaEquality_alt inlFormation_alt universeIsType applyEquality independent_pairEquality because_Cache isectElimination inhabitedIsType equalityIstype unionIsType unionElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction cut sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}J:\mBbbQ{}Interval.  ((\muparrow{}Inhabited(J))  {}\mRightarrow{}  (\mforall{}I:\mBbbQ{}Interval.  (I  \mleq{}  J  {}\mRightarrow{}  ((I  =  J)  \mvee{}  (dim(I)  =  (dim(J)  -  1))))))



Date html generated: 2019_10_29-AM-07_48_08
Last ObjectModification: 2019_10_18-AM-10_52_31

Theory : rationals


Home Index