Nuprl Lemma : rat-interval-dimension-single
∀[a:ℚ]. (dim([a]) ~ 0)
Proof
Definitions occuring in Statement : 
rat-interval-dimension: dim(I)
, 
rat-point-interval: [a]
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
false: False
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rat-point-interval: [a]
, 
rat-interval-dimension: dim(I)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rationals_wf, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
qless_wf, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
qless_irreflexivity, 
iff_weakening_equal, 
assert-q_less-eq, 
eqtt_to_assert, 
q_less_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
int_seg_wf, 
subtype_base_sq
Rules used in proof : 
axiomSqEquality, 
productIsType, 
isect_memberEquality_alt, 
approximateComputation, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
universeIsType, 
dependent_functionElimination, 
promote_hyp, 
equalityIstype, 
dependent_pairFormation_alt, 
voidElimination, 
independent_functionElimination, 
because_Cache, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesisEquality, 
lambdaEquality_alt, 
intEquality, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:\mBbbQ{}].  (dim([a])  \msim{}  0)
Date html generated:
2019_10_29-AM-07_48_01
Last ObjectModification:
2019_10_17-PM-03_27_15
Theory : rationals
Home
Index