Nuprl Lemma : rat-interval-dimension-single

[a:ℚ]. (dim([a]) 0)


Proof




Definitions occuring in Statement :  rat-interval-dimension: dim(I) rat-point-interval: [a] rationals: uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) lelt: i ≤ j < k rev_implies:  Q not: ¬A assert: b bnot: ¬bb sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff false: False ifthenelse: if then else fi  iff: ⇐⇒ Q guard: {T} prop: and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] rat-point-interval: [a] rat-interval-dimension: dim(I) so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rationals_wf istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_not_lemma itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le qless_wf assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert qless_irreflexivity iff_weakening_equal assert-q_less-eq eqtt_to_assert q_less_wf int_subtype_base istype-int lelt_wf set_subtype_base int_seg_wf subtype_base_sq
Rules used in proof :  axiomSqEquality productIsType isect_memberEquality_alt approximateComputation independent_pairFormation dependent_set_memberEquality_alt universeIsType dependent_functionElimination promote_hyp equalityIstype dependent_pairFormation_alt voidElimination independent_functionElimination because_Cache productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation_alt inhabitedIsType hypothesisEquality lambdaEquality_alt intEquality sqequalRule independent_isectElimination hypothesis natural_numberEquality cumulativity isectElimination sqequalHypSubstitution extract_by_obid instantiate thin cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbQ{}].  (dim([a])  \msim{}  0)



Date html generated: 2019_10_29-AM-07_48_01
Last ObjectModification: 2019_10_17-PM-03_27_15

Theory : rationals


Home Index