Nuprl Lemma : q_less_wf
∀[a,b:ℚ].  (q_less(a;b) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
q_less: q_less(r;s)
, 
rationals: ℚ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
q_less: q_less(r;s)
, 
subtype_rel: A ⊆r B
, 
ocgrp: OGrp
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
Lemmas referenced : 
rational_set_blt, 
set_blt_wf, 
oset_of_ocmon_wf0, 
qadd_grp_wf2, 
ocgrp_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbQ{}].    (q\_less(a;b)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-10_57_22
Last ObjectModification:
2015_12_27-PM-07_52_04
Theory : rationals
Home
Index