Nuprl Lemma : q_less_wf

[a,b:ℚ].  (q_less(a;b) ∈ 𝔹)


Proof




Definitions occuring in Statement :  q_less: q_less(r;s) rationals: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T q_less: q_less(r;s) subtype_rel: A ⊆B ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) qadd_grp: <ℚ+> grp_car: |g|
Lemmas referenced :  rational_set_blt set_blt_wf oset_of_ocmon_wf0 qadd_grp_wf2 ocgrp_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbQ{}].    (q\_less(a;b)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-10_57_22
Last ObjectModification: 2015_12_27-PM-07_52_04

Theory : rationals


Home Index