Nuprl Lemma : assert-q_less-eq
∀[a,b:ℚ].  ((↑q_less(a;b)) = a < b ∈ ℙ)
Proof
Definitions occuring in Statement : 
q_less: q_less(r;s)
, 
qless: r < s
, 
rationals: ℚ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
assert-q_less, 
qless_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbQ{}].    ((\muparrow{}q\_less(a;b))  =  a  <  b)
Date html generated:
2016_05_15-PM-10_57_29
Last ObjectModification:
2015_12_27-PM-07_52_02
Theory : rationals
Home
Index